Hox genes, homeosis and the evolution of segment identity: no need for hopeless monsters.
نویسنده
چکیده
Significant changes have occurred in the developmental role of Hox genes, even within groups of arthropods that already have complex body plans and many different segment types. This is hard to reconcile with the 'selector gene' model for Hox gene function. Selector genes act as stable binary switches that direct lineages of cells to adopt alternative developmental fates. This model suggests that the regulation of selector genes can only evolve through mutations that alter the identity of whole developmental compartments -in the case of Hox genes, whole segments. Once segments have evolved distinct morphology and function, such mutations will result in dramatic homeotic transformations that are unlikely to be tolerated by natural selection. Thus we would expect the developmental role of these "master control genes" to become frozen as body plans become more complex. I argue for a revised model for the role and regulation of the Hox genes. This provides alternative mechanisms for evolutionary change, that may lead to incremental changes in segment morphology. The summation of such changes over long periods of time would result in differences in Hox gene function between taxa comparable to the effects of gross homeotic mutations, without the need to invoke the selective advantage of hopeful monsters.
منابع مشابه
Homeotic Complex (Hox) gene regulation and homeosis in the mesoderm of the Drosophila melanogaster embryo: the roles of signal transduction and cell autonomous regulation
In this paper we evaluate homeosis and Homeotic Complex (Hox) regulatory hierarchies in the somatic and visceral mesoderm. We demonstrate that both Hox control of signal transduction and cell autonomous regulation are critical for establishing normal Hox expression patterns and the specification of segmental identity and morphology. We present data identifying novel regulatory interactions asso...
متن کاملO-28: Role of HOX Family Related Genes in Pain Generation of Endometriosis Patients
Background Endometriosis is a common gynecological disease, can cause severe pelvic pain. Studies demonstrated the presence of sensory nerve fibers in endometrium of endometriosis patient. Nevertheless, no information is available on mechanisms of sensory nerve formation in eutopic or ectopic lesions. Since HOX genes have important roles in both reproductive tract and nerve growth, we decided t...
متن کاملArthropod Evolution: Brine shrimp add salt to the stew
The expression patterns of homeotic genes in a crustacean-the brine shrimp Artemia franciscana-provide a new perspective on the evolution of arthropod body plans. The ancestral arthropod is thought to have had a body made up of a series of similar segments, each bearing an unspecialized limb. A major trend in arthropod evolution has been an ever-increasing specialization and regional-ization of...
متن کاملEvolution of the interaction between Hox genes and a downstream target
Segmental identities along the insect body depend on the activities of Hox genes [1,2]. In Drosophila melanogaster, one well-studied Hox regulatory target is Distal-less (Dll), which is required for the development of distal limb structures [3]. In abdominal segments, Dll transcription is prevented when Hox proteins of the Bithorax Complex (BX-C) bind to cis-regulatory elements upstream of the ...
متن کاملDrosophila fushi tarazu a gene on the border of homeotic function
BACKGROUND Hox genes specify cell fate and regional identity during animal development. These genes are present in evolutionarily conserved clusters thought to have arisen by gene duplication and divergence. Most members of the Drosophila Hox complex (HOM-C) have homeotic functions. However, a small number of HOM-C genes, such as the segmentation gene fushi tarazu (ftz), have nonhomeotic functi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The International journal of developmental biology
دوره 42 3 شماره
صفحات -
تاریخ انتشار 1998